Prof. Wenge Wang
.
Author:芮莹  Release time:2020-05-29   Access times:356

Name: 

Wenge Wang

Address:

Room 17003, Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China

Tel:

0551-63603410

E-mail:

wgwang@ustc.edu.cn

 

EDUCATION AND RESEARCH EXPERIENCE


1983.9. — 1987.7.Bachelorcrystal physics, Nanjiang University

1987.9. — 1992.7.Ph. Dtheoretical physics, Nanjiang University

1992.9.— 1994.9.Shanghai nuclear institute, China, Postdoc.

1994.9.—1996.9.Dept. of Phys., Nanjing Univ., China, Postdoc.

1996.9 — 1997.9.Como Branch of Milan Univ., Italy, Postdoc.

1997.9. — 2007.4.Southeast Univ., China, staff.

2002.2. — 2007.5.Dept. of Phys., National Univ. of Singapore, research fellow.

2007.5. — present: University of Science and Technology of China, professor.


RESEARCH INTERESTS

In recent years, we study topics in the following fields: quantum chaos, quantum thermodynamics, thermalization, foundations of statistical physics, and foundations of quantum mechanics.

 

CURRENT RESEARCH PROJECTS

1.

National Natural Science Foundation of China under Grant Number 11775210. “Study of thermalization and temperature properties of small quantum chaotic systems”2018.1——2021.12.

2.

National Natural Science Foundation of China under Grant Number 11535011, “Dynamics study of small quantum systems2016.1.——2020.12.

 

REPRESENTATIVE PUBLICATIONS


  1. Jiaozi Wang and Wen-ge Wang, ``Convergent perturbation expansion of energy eigenfunctions on unperturbed basis states in classically-forbidden regions'', J. Phys. A 52, 235204 (2019).

  2. Wen-Lei Zhao, Jiaozi Wang and Wen-ge Wang, ``Quantum-classical correspondence in a nonlinear Gross–Pitaevski system'', J. Phys. A 52, 305101 (2019).

  3. Wen-ge Wang, ``A Renormalized-Hamiltonian-Flow Approach to Eigenenergies and Eigenfunctions'', Commun. Theor. Phys. 71 861-868 (2019).

  4. Hua Yan, Jiao-Zi Wang, and Wen-ge Wang, ``Similar Early Growth of Out-of-time-ordered Correlators in Quantum Chaotic and Integrable Ising Chains'', Commun. Theor. Phys. 71 1359-1362 (2019).

  5. Jiaozi Wang and Wen-ge Wang, “Characterization of random features of chaotic eigenfunctions in unperturbed basis”, Phys.Rev.E 97, 062219 (2018).

  6. Wen-ge Wang, ``Decoherence approach to energy transfer and work done by slowly driven systems'', Phys.Rev.E 97, 012128 (2018).

  7. Hanqing Zhaoand Wen-ge Wang, “Fourier heat conduction as a strong kinetic effect in one-dimensional hard-core gases”, Phys.Rev.E,97, 010103(R) (2018).

  8. Jiaozi Wang and Wen-ge Wang, “Internal temperature of quantum chaotic systems at the nanoscale”, Phys.Rev.E, 96, 032207 (2017).

  9. Qian Wang and Wen-ge Wang, “Probing quantum critical points by Fisher information at finite temperature”, Mod.Phys.Lett. B 311750107 (2017).

  10. Jiaozi Wang and Wen-ge Wang, “Correlations in eigenfunctions of quantum chaotic systems with sparse Hamiltonian matrices”, Phys.Rev.E, 96, 052221 (2017).

  11. Wen-ge Wang, ``Anticommutation relations for fermionic fields derived from basic properties of the inner product'', Phys.Rev.A 94, 012112 (2016).

  12. Wen-Lei Zhao, Jiangbin Gong, Wen-Ge Wang, Giulio Casati, Jie Liu, and Li-Bin Fu, ``Exponential wave-packet spreading via self-interaction time modulation'', Phys.Rev.A 94, 053631 (2016).

  13. Jiaozi Wang and Wen-ge Wang, ``Statistical distribution of components of energy eigenfunctions: from nearly-integrable to chaotic'', Chaos, Solitons and Fractals 91, 291-298 (2016).

  14. Yinbiao Yang and Wen-ge Wang, ``Signature of the existence of a coherently condensed state in a dilute gas above the Bose-Einstein-condensate transition temperature'', Phys. Rev. A 91, 013623 (2015).

  15. Qian Wang, Pinquan Qin, and Wen-ge Wang, ``Relative criterion for validity of a semiclassical approach to the dynamics near quantum critical points'', Phys. Rev. E 92, 042157 (2015).

  16. Qian Wang, Ping Wang, Yinbiao Yang, and Wen-ge Wang, ``Decay of quantum Loschmidt echo and fidelity in the broken phase of the Lipkin-Meshkov-Glick model'', Phys. Rev. A 91, 042102 (2015).

  17. Yinbiao Yang and Wen-ge Wang, ``A Phenomenon of Decoherence Induced by Chaotic Environment'', Chin. Phys. Lett. 32, No.3, 030301 (2015).

  18. Pinquan Qin, Wen-ge Wang, Giuliano Benenti, and Giulio Casati, ``Complexity and instability of quantum motion near a quantum phase transition'', Phys. Rev. E 89, 032120 (2014).

  19. Lewei He and Wen-ge Wang, ``Statistically preferred basis of an open quantum system: Its relation to the eigenbasis of a renormalized self-Hamiltonian'', Phys. Rev. E 89, 022125 (2014).

  20. Pinquan Qin, Qian Wang, and Wen-ge Wang, ``Semiclassical approach to the quantum Loschmidt echo in deep quantum regions: from validity to breakdown'', Phys. Rev. E 86, 066203 (2012).

  21. Wen-ge Wang, Pinquan Qin, Qian Wang, Giuliano Benenti, and Giulio Casati, ``Scaling behavior for a class of quantum phase transitions'', Phys. Rev. E, 86, 021124 (2012).

  22. Wen-ge Wang, ``Statistical description of small quantum systems beyond weak-coupling limit'', Phys. Rev. E, 86, 011115 (2012).

  23. Wen-ge Wang, Lewei He, and Jiangbin Gong, ``Preferred States of Decoherence under Intermediate System-Environment Coupling'', Phys.Rev.Lett. 108, 070403 (2012).

  24. Zhihao Xiao, Lewei He, and Wen-ge Wang, “Efficiency of dynamical decoupling sequences in presence of pulse errors”, Phys. Rev. A, 83, 032322 (2011).

  25. Wen-ge Wang, Pinquan Qin, Lewei He, and Ping Wang, ``Semiclassical Approach to Survival Probability at Quantum Phase Transitions'', Phys. Rev. E, 81, 016214 (2010).

  26. Qiang Zheng, Wen-ge Wang, Xiaoping Zhang, and Zhongzhou Ren, “Relatively-long time decay of Loschmidt echo of a Bose-Einstein Condensate in a double-well potential”, Eur. Phys. J. D 58, 275 (2010).

  27. Ping Wang, Qiang Zheng, and Wen-ge Wang, “Decay of Loschmidt echo at a critical point in the Lipkin-Meshkov-Glick model”, Chin. Phys. Lett. 27, 080301 (2010).

  28. Qiang Zheng, Wen-ge Wang, Pinquan Qin, Ping Wang, Xiaoping Zhang, and Zhongzhou Ren, ``Decay of Loschmidt echo in a Bose-Einstein Condensate at dynamical phase transition'', Phys. Rev. E, 80, 016214 (2009).

  29. Wen-ge Wang, Jiangbin Gong, G. Casati, and Baowen Li``Entanglement-induced Decoherence and Energy Eigenstates’’, Phys. Rev. A, 77, 012108 (2008).

  30. Wen-ge Wang, Jie Liu, and Baowen Li, ``Stability of Fock States in a Two-Component Bose-Einstein Condensate with a Regular Classical Counterpart'', Phys. Rev. E, 77, 056218 (2008).

  31. Wen-ge Wang, ``Sensitivity of Quantum Motion to Perturbation in a Triangle Map'', Phys. Rev. E 77, 036206 (2008).

  32. Qiang Zheng, Wen-ge Wang, Xiaoping Zhang, and Zhongzhou Ren, ``Loschmidt echo near a dynamical phase transition in a Bose-Einstein Condensate'', Phys. Lett. A, 372, 5139 (2008).

  33. Wen-ge Wang, G. Casati, and Baowen Li, ``Stability of quantum motion in regular systems: a uniform semiclassical approach'', Phys. Rev. E 75, 016201 (2007).

  34. Wen-ge Wang and Baowen Li, ``Stability of quantum motion: A Semiclassical Approach'', Int. J. Mod. Phys. B 21, 4280 (2007).

  35. Jie Liu, Wenge Wang, Chuanwei Zhang, Qian Niu, and Baowen Li, ``Fidelity of a Bose-Einstein Condensate'', Phys. Lett. A, 353, 216 (2006).

  36. Jie Liu, Wenge Wang, Chuanwei Zhang, Qian Niu, and Baowen Li, ``Fidelity for the quantum evolution of a Bose-Einstein Condensate'', Phys. Rev. A, 72, 063623 (2005).

  37. Wen-ge Wang, G. Casati, B. Li, and T. Prosen, ``Uniform Semiclassical Approach to Fidelity Decay in the Deep Lyapunov Regime'', Phys. Rev. E 71, 037202 (2005).

  38. Wen-ge Wang and Baowen Li, ``Uniform Semiclassical Approach to Fidelity Decay: From weak to strong perturbation'', Phys. Rev. E 71, 066203 (2005).

  39. Wen-ge Wang, ``Decay rate of energy eigenfunctions in classically energetically inaccessible regions in more than one-dimensional configuration spaces'', Chin. Phys. Lett. 22, 2991 (2005).

  40. Wen-ge Wang, G. Casati, and Baowen Li, ``Stability of Quantum Motion: Beyond Fermi-golden-rule and Lyapunov decay'', Phys. Rev. E 69, 025201(R) (2004).

  41. Wen-ge Wang, ``Decay rate of energy eigenfunctions in classically energetically inaccessible regions'', Chin. Phys. Lett. 21, 1869 (2004).

  42. Wen-ge Wang and Baowen Li, “Crossover of quantum Loschmidt echo from golden-rule decay to perturbation-independent decay'', Phys. Rev. E 66, 056208 (2002).

  43. Wen-ge Wang, “Convergent Rayleigh-Schr\"{o}dinger perturbation expansions for low-lying eigenstates and eigenenergies of anharmonic oscillators in intermediate basis states”, Phys. Lett. A 303, 125 (2002).

  44. Wen-ge Wang, “Localization in band random matrix models with and without increasing diagonal elements”, Phys. Rev. E 65, 066207 (2002).

  45. Wen-ge Wang, “Nonperturbative and perturbative parts of energy eigenfunctions: A three-orbital schematic shell model”, Phys. Rev. E 65, 036219 (2002).

  46. Wen-ge Wang, “Localization and ergodicity in nonperturbative regions of energy eigenfunctions: from nearly integrable to chaotic”, Phys. Lett. A 291, 249 (2001).

  47. Wen-ge Wang, “Approach to energy eigenvalues and eigenfunctions from nonperturbative regions of eigenfunctions”, Phys. Rev. E 63,036215 (2001).

  48. Wang Wen-ge, “Statistics of eigenfunctions in 1D tight binding model: distribution of Riccati variable”, Commun. Theor. Phys. 36, 271 (2001) .

  49. Wen-ge Wang, “Approximate scaling behavior of local spectral density of states at relatively weak perturbation: A schematic shell model”, Chin. Phys. Lett. 18 (2001) 731.

  50. Wen-ge Wang, “The Wigner band random matrix model: studied from the viewpoint of a generalization of Brillouin-Wigner perturbation theory”, Commun. Theor. Phys. 35, 143 (2001).

  51. B. Hu, B. Li and W. Wang, “Universal statistics of wave functions in chaotic and disordered systems”, Europhys. Lett. 50, 300 (2000).

  52. Wen-ge Wang, “Perturbative and nonperturbative parts of eigenstates and local spectral density of states: The Wigner-band random-matrix model”, Phys. Rev. E 61, 952 (2000).

  53. Wen-ge Wang, F.M.Izrailev, and G.Casati, “Structure of eigenfunctions and local spectral density of states: A three-orbital shell model”, Phys. Rev. E 57, 323 (1998) .

  54. Wen-ge Wang and Gong-ou Xu, “Relation between nearest-level-spacing distribution p(s) near s=0 and distribution of some transition matrix elements”, Phys. Lett. A 211 (1996) 37.

  55. Gong-ou Xu, Jiang-bin Gong, Wen-ge Wang, Ya-tian Yang and De-ji Fu, “Development of quantum nonintegrability displayed in effective Hamiltonians: A three-level Lipkin model”, Phys. Rev. E 51 (1995) 1770.

  56. Wen-ge Wang, Gong-ou Xu and De-ji Fu, “Manifestation of destruction of quantum integrability with expectation and uncertainty values of quantum observables”, Phys. Lett. A 190 (1994) 377.

  57. Wen-ge Wang, Gong-ou Xu and De-ji Fu, “Manifestation of destruction of integrability in the evolution of the uncertainty measure”, Phys. Lett. A 183 (1993) 379.

  58. De-ji Fu, Ya-tian Yang, Wen-ge Wang and Gong-ou Xu, “Topological study of dynamic symmetry”, High Energy and Nuclear Physics, 17 (1993) 844.

  59. Gong-ou Xu, Wen-ge Wang and Ya-tian Yang, “Singular behavior at avoided level crossings in an iterative perturbation”, Phys. Rev. A 45 (1992) 5401.